Part (a).
Sigma notation (or summation notation) of binomial expansion is the following:
![(w+z)^n=\sum ^n_(k\mathop=0)\binom{n}{k}w^(n-k)\cdot z^k](https://img.qammunity.org/2023/formulas/mathematics/college/x9zqntsxtziyason6emjw1kf8ptkldxa89.png)
where
![\binom{n}{k}](https://img.qammunity.org/2023/formulas/mathematics/college/x4a157t629ay6dc294ed2hgis0yr0riehc.png)
denotes the binomial coefficient.
In our case, n is 4 and
![\begin{gathered} w=3x^5 \\ z=-(1)/(9)y^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hlgqoqpvc2wyibz7w2uz2fyaum6b0ty4un.png)
So by substituting these terms into the sigma expantion, we have
![(3x^5+(-(1)/(9)y^3))^4=\sum ^4_{k\mathop{=}0}\binom{4}{k}(3x^5)^(4-k)\cdot(-(1)/(9)y^3)^k](https://img.qammunity.org/2023/formulas/mathematics/college/iyvbzrop45b33ins5hdakprymj82t3ej1a.png)
So, the sum in summation notation is:
![(3x^5-(1)/(9)y^3)^4=\sum ^4_{k\mathop{=}0}\binom{4}{k}(3x^5)^(4-k)\cdot(-(1)/(9)y^3)^k](https://img.qammunity.org/2023/formulas/mathematics/college/7ngchd6f557edtymz0a04fl6ghfxfn92pq.png)
Part b.
By expanding the above sum, we have
![\begin{gathered} (3x^5-(1)/(9)y^3)^4=\binom{4}{0}(3x^5)^4\cdot(-(1)/(9)y^3)^0+\binom{4}{1}(3x^5)^3\cdot(-(1)/(9)y^3)^1+\binom{4}{2}(3x^5)^2\cdot(-(1)/(9)y^3)^2+ \\ \binom{4}{3}(3x^5)^1\cdot(-(1)/(9)y^3)^3+\binom{4}{4}(3x^5)^0\cdot(-(1)/(9)y^3)^4 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f499b7315gkei32n58aw1qxp2v7urv1r9g.png)
Since
![\begin{gathered} \binom{4}{0}=1 \\ \binom{4}{1}=4 \\ \binom{4}{2}=6 \\ \binom{4}{3}=4 \\ \binom{4}{4}=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sgpkeu5wnf9y939t40llq2fnpedtg572f4.png)
we have
![(3x^5-(1)/(9)y^3)^4=(3x^5)^4+4(3x^5)^3\cdot(-(1)/(9)y^3)^{}+6(3x^5)^2\cdot(-(1)/(9)y^3)^2+4(3x^5)^1\cdot(-(1)/(9)y^3)^3+(-(1)/(9)y^3)^4](https://img.qammunity.org/2023/formulas/mathematics/college/3lijzhw4soy8nfpbrw3evk1275zfngq754.png)
which gives
![(3x^5-(1)/(9)y^3)^4=81x^(20)-12x^(15)\cdot y^3+(6)/(9)x^(10)\cdot y^6-(12)/(729)x^5\cdot y^9+(1)/(6561)y^(12)](https://img.qammunity.org/2023/formulas/mathematics/college/xo1lg78x81jiquqobj7hw1jh6g1gqq4qej.png)
Therefore, the simplified expansion is given by:
![(3x^5-(1)/(9)y^3)^4=81x^(20)-12x^(15)\cdot y^3+(2)/(3)x^(10)\cdot y^6-(4)/(243)x^5\cdot y^9+(1)/(6561)y^(12)](https://img.qammunity.org/2023/formulas/mathematics/college/z5ftprmnzj4ljpyspy7w3u88mvvp81o50n.png)