Given:
![\sin A=-\frac{5}{\sqrt[]{61}}](https://img.qammunity.org/2023/formulas/mathematics/college/d1u1lrj78o4y5ovhjxoqw3sc6q873p7d1g.png)
the angle A is in QIII, So, the value of the tan A will be positive
To find tan A, we need to find the third side of the right-angle triangle that angle A fall inside it
From the sin A = opposite/hypotenuse
opposite side = 5
hypotenuse = √61
the adjacent side will be calculated using the Pythagorean theorem
![adjacent=\sqrt[]{(\sqrt[]{61})^2-5^2}=\sqrt[]{61-25}=\sqrt[]{36}=6](https://img.qammunity.org/2023/formulas/mathematics/college/7bprlvhzra82yo5shux83i2ncyqpffs9vs.png)
The value of tan A will be as follows:
![\begin{gathered} \tan A=(opposite)/(adjacent) \\ \\ \tan A=(5)/(6) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sh1yylz2bm311b9ido2p6l24pukza3q1wz.png)