Answer:
P = 110 degrees
Step-by-step explanation:
We were given the following information:
A quadrilateral NOPQ is inscribed in a circle. This makes the quadrilateral a cyclic quadrilateral
![\begin{gathered} \angle N=70^(\circ) \\ \angle O=94^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cxkrexeqnk619lccgqoqp7jrmph4lhim41.png)
Angle P is supplementary to Angle N; both angles P & N sum up to 180 degrees:
![\begin{gathered} \angle P+\angle N=180^(\circ) \\ \angle N=70^(\circ) \\ \angle P+70^(\circ)=180^(\circ) \\ \text{Subtract ''}70^(\circ)\text{'' from both sides, we have:} \\ \angle P=(180-70)^(\circ) \\ \angle P=110^(\circ) \\ \\ \therefore\angle P=110^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dse1wmb6hu4h8f8jvfn044nzi16kcnk35z.png)
Therefore, the angle at P equals 110 degrees