Answer:
(f + g)(x) = 4x + 9
(fg)(x) = 3x² + 17x + 20
(f - g)(x) = 2x + 1
Step-by-step explanation:
We know that
f(x) = 3x + 5
g(x) = x + 4
Then, we can find (f + g)(x) as follows
(f + g)(x) = f(x) + g(x)
(f + g)(x) = (3x + 5) + (x + 4)
(f + g)(x) = 3x + 5 + x + 4
(f + g)(x) = 4x + 9
In the same way, we can calculate (fg)(x) and (f - g)(x) as follows
(fg)(x) = f(x)g(x)
(fg)(x) = (3x + 5)(x + 4)
(fg)(x) = 3x(x) + 3x(4) + 5(x) + 5(4)
(fg)(x) = 3x² + 12x + 5x + 20
(fg)(x) = 3x² + 17x + 20
(f - g)(x) = f(x) - g(x)
(f - g)(x) = (3x + 5) - (x + 4)
(f - g)(x) = 3x + 5 - x - 4
(f - g)(x) = 2x + 1
Therefore, the answers are
(f + g)(x) = 4x + 9
(fg)(x) = 3x² + 17x + 20
(f - g)(x) = 2x + 1