Answer:
A
Step-by-step explanation:
To determine which sequence of transformation will map figure K onto figure K', we test each of the options using the point (6,5) in Figure K.
Option A
Reflection across x=4, 180° rotation about the origin, and a translation of (x+8,y)
![\left(6,5\right)\rightarrow(2,5)\rightarrow\left(-2,-5\right)\rightarrow(6,-5)](https://img.qammunity.org/2023/formulas/mathematics/high-school/mxxuw5inpof2xsen5fv56elocx1qg4q1zv.png)
Option B
Reflection across x=4, 180° rotation about the origin, and a translation of (x-8, y)
![\left(6,5\right)\rightarrow(2,5)\rightarrow\left(-2,-5\right)\rightarrow(-10,-5)](https://img.qammunity.org/2023/formulas/mathematics/high-school/vxi79oe72urmlxpofoykm6zl0jmy0cybjl.png)
Option C
Reflection across y=4, 180° rotation about the origin, and a translation of (x+8,y)
![\left(6,5\right)\rightarrow(6,3)\rightarrow\left(-6,-3\right)\rightarrow(2,-3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/8fczt4kzfs0xeu3yl3b0uxa5v9s80atpcd.png)
Option D
Reflection across y=4, 180° rotation about the origin, and a translation of (x-8,y)
![\left(6,5\right)\rightarrow(6,3)\rightarrow\left(-6,-3\right)\rightarrow(-14,-3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/40139smen924ppog9dtl2h3rnp8m1ec325.png)
We can see that Option A is the one which maps point (6,5) to (6,-5).
Therefore, it is the sequence of transformations will map figure K onto figure K'.