171k views
0 votes
If f(x) =(4x^2 -11)^3 and g(x) = 4x^2 -11. given that f(x) = (h°g)(x) find h(x)

User Nani
by
3.9k points

1 Answer

5 votes

Given:


\left(x\right)=\left(4x^2-11\right)^3andg\left(x\right)=4x^2-11.

Required:

Find h(x) if


f\mleft(x\mright)=h°g\left(x\right)

Step-by-step explanation:


\begin{gathered} f\mleft(x\mright)=h°g\left(x\right) \\ f\mleft(x\mright)=h(g(x)) \end{gathered}

Let g(x) = x


f(x)=h(x)
(4x^2-11)^3=x^3

Solve by taking cube root on both sides.


x=4x^2-11
\begin{gathered} g(x)=x \\ g(x)=4x^2-11 \end{gathered}

User Agus Mathew
by
4.3k points