Given a function g(x), we can translate the graph by:
· A vertical shift. If we want to shift the function k units vertically:
![Vertical\text{ }shift:g(x)+k](https://img.qammunity.org/2023/formulas/mathematics/college/py6m2e0i7wd3q7d1d4qy925w1igbj6xsew.png)
If k is negative, the shift is downwards. If k is positive, the shift is upwards.
·A horizontal shift. If we want to shift the function h units horizontally:
![Horizontal\text{ }shift:g(x+h)](https://img.qammunity.org/2023/formulas/mathematics/college/6ahkyib5590genkig4cy9bztl4zvpcu0ls.png)
If h is positive, the graph shifts to the left. If h is negative, the graph shift to the right.
In the graph given, we know that:
![f(0)=\sqrt[3]{0}=0](https://img.qammunity.org/2023/formulas/mathematics/college/eb2i91mfgwaikwhjr21vykavmv8d1pysc3.png)
But g(-2) = 0. This means that the graph has a horizontal shift 2 units to the left.
As we have seen before, to shift two units to the left:
![\sqrt[3]{x}\text{ }shifted\text{ }2\text{ }units\text{ }left\Rightarrow\sqrt[3]{x+2}](https://img.qammunity.org/2023/formulas/mathematics/college/8o8z4q4bufurm7gy8dkprrh145h4uz89w3.png)
thus, the correct answer is the second optiion:
![h(x)=\sqrt[3]{x+2}](https://img.qammunity.org/2023/formulas/mathematics/college/o5btw54kltpztefhlwthekb7hfu5080h06.png)