Given
a) sin A = 0.4848
b) cos Y = 0.7431
c) cos X = 0.4226
d) tan B = 19.0811
To find:
Each angle measure to the nearest degree.
Step-by-step explanation:
It is given that,
a) sin A = 0.4848
b) cos Y = 0.7431
c) cos X = 0.4226
d) tan B = 19.0811
That implies,
a) sin A = 0.4848.
Then,
![\begin{gathered} A=\sin^(-1)(0.4848) \\ =28.99\degree \\ =30\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1t1vweu3xe4mwwhrldgrlvyf2t67c31ocb.png)
b) cos Y = 0.7431.
Then,
![\begin{gathered} Y=\cos^(-1)(0.7431) \\ =42.0038\degree \\ =42\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/b95c39rte2jdbnb3hpbbpqgndpvji8akf7.png)
c) cos X = 0.4226.
Then,
![\begin{gathered} X=\cos^(-1)(0.4226) \\ =65.001\degree \\ =65\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/hq2dybdkiiwxepm26n4nezq29w7ewsi2oe.png)
d) tan B = 19.0811.
Then,
![\begin{gathered} B=\tan^(-1)(19.0811) \\ =86.99\degree \\ =87\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/tzrhx0zgn7q3wb38esqpt9lgeqfxz8hjda.png)
Hence, the measure of each angle is,
a) A = 30°.
b) Y = 42°.
c) X = 65°.
d) B=87°.