Given polynomial:
![V(x)=1500x-x^2](https://img.qammunity.org/2023/formulas/mathematics/college/8nu7zdszvbuloil4xbg65j08mubwehw7uf.png)
Where x is the length of the fence in feet.
The maximum area of the enclosure can be found by differentiating the polynomial with respect to x and equating to zero.
We have:
![\begin{gathered} V^(\prime)(x)\text{ = 1500 - 2x} \\ 1500\text{ - 2x = 0} \\ 2x\text{ = 1500} \\ \text{Divide both sides by 2} \\ (2x)/(2)\text{ = }(1500)/(2) \\ x\text{ = 750} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iyjn9rfbvgsrd6eynhef5hhyyh3us9b5i1.png)
Substituting the value of x back into the enclosure function:
![\begin{gathered} V(x=750)\text{ = 1500 }*750-(750)^2 \\ =\text{ 562500} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x1p4827o1144gwzfern06kndu3p3rzqg3v.png)
Answer:
562500