Step 1
State the given data
n= 22 teens
mean = 1.3 hours
standard deviation = 0.35
Step 2
A) State with reason if we are to use t or standard z to calculate the confidence level
Conditions for using t standard include
1) n<30
2) The standard deviation is not given
Since the standard deviation is given we will use the z standard to calculate the confidence level
Step 3
Calculate a 99% confidence interval to estimate the grooming time for all teens
To do this we use the expression
![\bar{x}\pm z_{\propto\text{ }}*\text{ }\frac{s}{\sqrt[]{n}}](https://img.qammunity.org/2023/formulas/mathematics/college/12es65zi8u0wth0rawowf0umcu6bvcmorj.png)
Where

Substituting these value into the equation gives
![\begin{gathered} =1.3\pm2.576_{}*\frac{0.35}{\sqrt[]{22}} \\ =\text{ }1.3\pm2.576(0.07462025) \\ =\text{ 1.3 }\pm0.192221765 \\ So\text{ the interval is 1.3 }\pm0.192221765 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tldr3tbd18lfmbdrxklmsbf158ifuy31u7.png)
So the intervals will be
1.107778235 to 1.492221766