We need to solve the equation shown below for x:
![(1)/(3)(2x-1)=z](https://img.qammunity.org/2023/formulas/mathematics/college/ifmh30bjchqwwtwxz6vnbxu4n6ov444uda.png)
Using distributive propery, a(b - c) = ab - ac , we can simplify the left hand side:
![\begin{gathered} (1)/(3)(2x)-(1)/(3)(1)=z \\ (2)/(3)x-(1)/(3)=z \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d3amoiumt6e5nd9yzqlgsv0p9ry3sl955a.png)
We isolate the term with x and then divide the other side by 2/3 to get x = something...
![\begin{gathered} (2)/(3)x-(1)/(3)=z \\ (2)/(3)x=z+(1)/(3) \\ x=(z+(1)/(3))/((2)/(3)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qg23zkhvs1xf9gg1xbrtl0w2ii5r4x07z7.png)
To simplify it (reduce), we can divide both terms by (2/3) and simplify. Shown below:
![\begin{gathered} x=(z)/((2)/(3))+((1)/(3))/((2)/(3)) \\ x=z*(3)/(2)+(1)/(3)*(3)/(2) \\ x=(3z)/(2)+(1)/(2) \\ x=(3z+1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z2ak80gccqrhq7f57umkscj88u1slqa3ax.png)
The final answer:
![x=(3z+1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/odby4a58mwi13alltwzu27um3wevp9s1pe.png)