122k views
1 vote
For this question it is asking for the mean, standard deviation, Q1, Q3, lower fence, and upper fence

For this question it is asking for the mean, standard deviation, Q1, Q3, lower fence-example-1
User Hbd
by
4.7k points

1 Answer

3 votes

Step 1

Given;


10,\:15,\:19,\:52,\:34,\:44,\:47,\:20,\:60,\:25

Step 2

Find the mean


\begin{gathered} The\:arithemtic\:mean\:\left(average\right)\:is\:the\:sum\:of\:the\:values\:in\:the\:set\: \\ \begin{equation*} divided\:by\:the\:number\:of\:elements\:in\:that\:set. \end{equation*} \\ \mathrm{If\:our\:data\:set\:contains\:the\:values\:}a_1,\:\ldots \:,\:a_n\mathrm{\:\left(n\:elements\right)\:then\:the\:average}= \\ (\sum x)/(n)=(326)/(10)=32.6 \end{gathered}

Step 3

Find the standard deviation


S\mathrm{tandard\:deviation,\:}\sigma\left(X\right)\mathrm{,\:is\:the\:square\:root\:of\:the\:variance:}\sigma\left(X\right)=\sqrt{(\sum(x_i-\mu)^2)/(N)}
Standard\text{ deviation=}17.28326

Step 4

Find Q1


\begin{gathered} The\:first\:quartile\:is\:computed\:by\:taking\:the\:median\:of\:the\:lower\:half\:of\:a\:sorted\:set \\ Arrange\text{ in ascending order} \\ 10,\:15,\:19,\:20,\:25,\:34,\:44,\:47,\:52,\:60 \\ Take\text{ the lower half of the ascending set} \\ 10,15,19,20,25 \\ Q_1=19 \end{gathered}

Step 5

Find Q3


\begin{gathered} \mathrm{The\:third\:quartile\:is\:computed\:by\:taking\:the\:median\:of\:the\:higher\:half\:of\:a\:sorted\:set.} \\ Arrange\text{ the terms in ascending order} \\ 10,\:15,\:19,\:20,\:25,\:34,\:44,\:47,\:52,\:60 \\ Take\text{ the upper half of the ascending term} \\ 34,44,47,52,60 \\ Q_3=47 \end{gathered}

Step 6

Find the lower fence


\begin{gathered} =Q_1-1.5(IQR) \\ IQR=Q_3-Q_1=47-19=28 \\ =19-1.5(28)=-23 \end{gathered}

Step 7

Find the upper fence


\begin{gathered} =Q_3+1.5(IQR) \\ =47+1.5(28)=89 \end{gathered}

User Szymon Pobiega
by
4.8k points