We are given the following function:
![f\mleft(x\mright)=7x^2-7x](https://img.qammunity.org/2023/formulas/mathematics/college/sp3mclbpawmoevphp6qnpjbtu2sx6b8bgs.png)
Part A. We are asked to determine the slope of the tangent line at "x = 4".
To determine the slope of the tangent line at a point "x = a" we use the following limit definition:
![m=\lim _(x\rightarrow a)(f(x)-f(a))/(x-a)](https://img.qammunity.org/2023/formulas/mathematics/college/7umjiqizxtl2r5j39p0we36sembybdd0mx.png)
Now, we substitute the value of "x = 4" in the limit definition, we get:
![m=\lim _(x\rightarrow4)(f(x)-f(4))/(x-4)](https://img.qammunity.org/2023/formulas/mathematics/college/11eycyopc490sl69zbtqsk69lp9pgijw7p.png)
Now, we determine the value of f(4) from the given function;
![f(4)=7(4)^2-7(4)](https://img.qammunity.org/2023/formulas/mathematics/college/nnrf2r8k7rasdh9jrlfdi45z9hzuzlqziq.png)
Solving the operations:
![f(4)=84](https://img.qammunity.org/2023/formulas/mathematics/college/jcdsc6lkbrihk2y6lp9xlblzokqqiwnnf8.png)
Now, we substitute the values in the limit:
![m=\lim _(x\rightarrow4)(7x^2-7x-84)/(x-4)](https://img.qammunity.org/2023/formulas/mathematics/college/buktjrgg12lzmdogdpgimkkwati8ah2wrc.png)
Now, we take 7 as a common factor:
![m=\lim _(x\rightarrow4)(7(x^2-x-12))/(x-4)](https://img.qammunity.org/2023/formulas/mathematics/college/cp1hrvzw69huy38rpjmm51x8vf9svrw1q4.png)
Now, we factor de denominator, we get:
![m=\lim _(x\rightarrow4)(7(x+3)(x-4))/(x-4)](https://img.qammunity.org/2023/formulas/mathematics/college/4wlvdi6duqobbrymwn83r3uqqu0m7yilxb.png)
Now, we cancel out the "x - 4":
![m=\lim _(x\rightarrow4)7(x+3)](https://img.qammunity.org/2023/formulas/mathematics/college/rduapofsvigol5s835kftyjeksak1xj4h7.png)
Now, we substitute the values of "x = 4", we get:
![m=\lim _(x\rightarrow4)7(x+3)=7(4+3)=49](https://img.qammunity.org/2023/formulas/mathematics/college/wc15kbkfstinozb9z4bqysvw8k013ob2so.png)
Therefore, the slope is 49.
Part B. We are asked to determine the equation of the tangent line. We have that the general form of a line equation is:
![y=mx+b](https://img.qammunity.org/2023/formulas/mathematics/high-school/smsb8cbft03lwblmi49nf2l6jby2ofxzws.png)
From part A we have that the slope is 49, therefore, we have:
![y=49x+b](https://img.qammunity.org/2023/formulas/mathematics/college/51okmp77w4jmqvvqgis0nbacfflslettro.png)
Now, we need to determine a point on the line to determine the value of "b". We already have that the point "x = 4" is part of the line. To determine the corresponding value of "y" we substitute in the given function:
![f(4)=7(4)^2-7(4)](https://img.qammunity.org/2023/formulas/mathematics/college/nnrf2r8k7rasdh9jrlfdi45z9hzuzlqziq.png)
Solving we get:
![f(4)=84](https://img.qammunity.org/2023/formulas/mathematics/college/jcdsc6lkbrihk2y6lp9xlblzokqqiwnnf8.png)
Therefore, the point (x, y) = (4, 84) is on the line. Substituting we get:
![84=49(4)+b](https://img.qammunity.org/2023/formulas/mathematics/college/brd2623cy0wpe9fv7hjkszfrysoda6kkoc.png)
Solving the product:
![84=196+b](https://img.qammunity.org/2023/formulas/mathematics/college/i3ztat2w66erfw5itlcsm8lxxscsspwsj2.png)
Now, we subtract 196 from both sides:
![\begin{gathered} 84-196=b \\ -112=b \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lmnldtk7kzhkvm9p1pn5udl3qcgezcy8r7.png)
Now, we substitute the value in the line equation:
![y=49x-112](https://img.qammunity.org/2023/formulas/mathematics/college/w8naiq70n0ke3zh8t56gmpfp1xpg0zl3jv.png)
Thus we have determined the equation of the tangent line.