189k views
0 votes
Determine the approximate value of the perimeter of the triangle

Determine the approximate value of the perimeter of the triangle-example-1
User Kezz
by
4.8k points

1 Answer

3 votes

Answer:

The perimeter of the triangle is:


36\text{ units}

Step-by-step explanation:

The perimeter of the triangle is the sum of the values of the three sides.

For the given triangle, we have;


P=x+12+9

Recall that we can get the value of x using the Pythagoras theorem;


\begin{gathered} x=\sqrt[]{12^2+9^2} \\ x=\sqrt[]{144+81} \\ x=\sqrt[]{225} \\ x=15 \end{gathered}

So, the perimeter P becomes;


\begin{gathered} P=15+12+9 \\ P=36\text{ units} \end{gathered}

Therefore, the perimeter of the triangle is:


36\text{ units}

User Simon Mokhele
by
4.9k points