In this case, we'll have to carry out several steps to find the solution.
Step 01:
Data:
distance = s
time = t
Step 02:
directly proportional:
s = kt²
k:
s = 16 ft
t = 1 s
16 ft = k * (1 s)²
16 ft = k * 1 s²
16 ft / s² = k
distance, t = 4 s:
s = 16 ft / s² * (4 s)² = 16 ft / s² * 16 s² = 256 ft
time, s = 144 ft:
144 ft = 16 ft / s² * t²
![\begin{gathered} \frac{144\text{ ft}}{16\text{ ft / s}^2}=\text{ t}^2 \\ \\ \sqrt{9\text{ s}^2}=t \\ \\ 3\text{ s = t } \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zytv0tia3mwi1vv2z2z8md01r5iawvlzbk.png)
The answer is:
distance, t = 4 s:
s = 256 ft
time, s = 144 ft:
t = 3 s