Two lines are perpendicular when the product between the slopes of the lines is equal to -1, then, if we have the following lines:
![\begin{gathered} y_1=m_1x+b_1 \\ y_2=m_2x+b_2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i2kwoqao6ji13crqdpz5buyzdnqgb2a8h9.png)
they will be perpendicular if,
![m_1\cdot m_2=-1](https://img.qammunity.org/2023/formulas/mathematics/college/2oa1vyf8syua6zhnw9kmyu2rz1uv4eannx.png)
According to the exercise, the first line is:
![y=-4x+7](https://img.qammunity.org/2023/formulas/mathematics/college/xr32jbvassomqiej8rbubhmyeplaqfi12j.png)
the slope for this line is -4.
Write the equation that makes two lines perpendicular,
![-4\cdot m_2=-1](https://img.qammunity.org/2023/formulas/mathematics/college/negxk09u1f181hahhn4fitplhdfh3cafm5.png)
solve for m2,
![\begin{gathered} m_2=(-1)/(-4) \\ m_2=(1)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ric6zqj28jx3qdbeqnmmkoucazcotcwe2r.png)
Answer:
The slope of the line perpendicular to y=-4x+7 is 1/4.