Let us draw out the triangle below:
Given that
![\arctan \frac{\sqrt[]{3}}{3}=\beta](https://img.qammunity.org/2023/formulas/mathematics/college/2v47w8fyfcobv45yzkxuc9xhv0w4b4wbei.png)
Using the trigonometric identity for tan 30, where
![\tan 30=\frac{\sqrt[]{3}}{3}](https://img.qammunity.org/2023/formulas/mathematics/college/qeawovtf3a44ete614g0bfe7lk2blwdx17.png)
Therefore,

The sum of angles in a triangle is 180°.
Therefore,

To get the sides of the triangle, let us apply the Trigonometric ratios:
Using the Sine Trig. ratio,
![undefined]()