Given:
The coordinates of the vertices are,
![\begin{gathered} D(-4,1) \\ E(-1,1) \\ F(-1,10) \\ G(-4,10) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9ek0kp3fi7v3tgobpwetf8jh9eatbvxymc.png)
To find:
The coordinates of the vertices after rotating 90 degrees counter-clockwise direction.
Step-by-step explanation:
The transformation rule is,
![(x,y)\rightarrow(-y,x)](https://img.qammunity.org/2023/formulas/mathematics/college/ncbatl6u6j1uk5mvteojrgqis6t45s1ec1.png)
Applying the rule,
The coordinates of the vertices become,
![\begin{gathered} D^(\prime)(-1,-4) \\ E^(\prime)(-1,-1) \\ F^(\prime)(-10,-1) \\ G^(\prime)(-10,-4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d8p0y0lyp1w7tokpfebjr94y6j34olvouh.png)
Final answer:
The coordinates of the vertices are,
![\begin{gathered} D^(\prime)(-1,-4) \\ E^(\prime)(-1,-1) \\ F^(\prime)(-10,-1) \\ G^(\prime)(-10,-4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d8p0y0lyp1w7tokpfebjr94y6j34olvouh.png)