Answer:
u = 21
Explanation:
Consider triangle XWV and triange XYV
XV = XV (common)
Angle XVW = Angle XVY (given)
VW = VY (given)
∴triangle XWV ≅ triange XYV (SAS)
∴ XW = XY (corr. sides, ≅ triangles)
u + 42 = 3u
WX = XY because (VW = VY)
WX = u + 42
XY = 3u
42 = 3u - u
42 = 2u
u = 42 / 2
1.6m questions
2.0m answers