SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Write the given probabilities
![\begin{gathered} p(A\cap B)=(3)/(100) \\ p(B|A)=(3)/(20) \\ p(A)=? \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1t9xzvgqb7nq0csby4nf53a6mgt25bshut.png)
STEP 2: Write the formula for conditional probability
![p(B|A)=(p(A\cap B))/(p(A))](https://img.qammunity.org/2023/formulas/mathematics/high-school/crrezfn9ef2bbe2led3kayo1gorknpcvzn.png)
STEP 3: Get the value of the requried probability
By Substitution,
![\begin{gathered} (3)/(20)=((3)/(100))/(p(A)) \\ \\ (3)/(20)=(3)/(100* p(A)) \\ Cross\text{ Multiply} \\ 3(100p(A))=3*20 \\ 300* p(A)=60 \\ p(A)=(60)/(300)=(1)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ctlw2p6ie273c3ipe2oznwr6ue74txf411.png)
Hencce, p(A) = 1/5