43
Explanation
Step 1
let x represents the first number
first number=X
as the number are consecutives, the second number would be
![\begin{gathered} \text{second number= first number +1} \\ \text{second number=x}+1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/44tkn3cq0lkxdpjqdoh3zbpzf6oi9737dv.png)
and the third number would be
![\begin{gathered} \text{third number= second number +1} \\ \text{third number=(x}+1)+1 \\ \text{third number=x}+2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m26edwfu0e63gab1sd7osjot29ry44inbc.png)
Now, we are told the sum of the three consecutive numbers is 126,so
![\text{first number+second number+thir number=126}](https://img.qammunity.org/2023/formulas/mathematics/college/9wutp6v989dxj7xtl28oaq899ubuzk4hbv.png)
replace
![x+(x+1)+(x+2)=126\rightarrow equation\text{ (1)}](https://img.qammunity.org/2023/formulas/mathematics/college/r97td1wuwol2gzir549o8er0e92oc548zc.png)
Step 2
solve the equation
![\begin{gathered} x+(x+1)+(x+2)=126\rightarrow equation\text{ (1)} \\ x+x+1+x+2=126\rightarrow equation\text{ (1)} \\ \text{add like terms} \\ 3x+3=126 \\ \text{subtract 3 in both sides} \\ 3x+3-3=126-3 \\ 3x=123 \\ \text{divide both sides by 3} \\ (3x)/(3)=(123)/(3) \\ x=41 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6gcjlm2jw935rrmzqopyhq0ynrjpxe0tc3.png)
Step 3
finally, replace the x value to find the numbers
![\begin{gathered} \text{first number= x} \\ \text{first number=}41 \\ \text{second number = x+1}=41+1 \\ \text{second number = }42 \\ \text{third number=x+2=41+2} \\ \text{third number=}43 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ztod0gjakaojmya617kwapkic0oh9qjy83.png)
theferore, the greatest number is 43
I hope this helps you