The points J is given as,
![J=(x_(1,)y_1)=(7,-5)\text{ }](https://img.qammunity.org/2023/formulas/mathematics/college/6qt0uleqm8d2rt2czkt2m0mi12cfagmu75.png)
The point K is given as,
![K=(x_(2,)y_2)=(-5,3)](https://img.qammunity.org/2023/formulas/mathematics/college/spcroghb8maom9n8gx9oc3vrvpf4kle9w1.png)
L is a point on JK that is 3 times closer to point J (assuming) than it is to point K.
Which means that the ratio is
![3\colon1](https://img.qammunity.org/2023/formulas/mathematics/college/2nz60v2rrxa41khtpl0fl48p5d2q4is9jx.png)
The coordinates of point L can be found by,
![(a\cdot x_1+b\cdot x_2)/(a+b),\text{ }(a\cdot y_1+b\cdot y_2)/(a+b)](https://img.qammunity.org/2023/formulas/mathematics/college/9czyjthkezpojvtp9l9etkj15is3lx9spx.png)
Where a:b = 3:1
So let us substitute the given coordinates into the above equation
![(3\cdot(7)+1\cdot(-5))/(3+1),\text{ }(3\cdot(-5)+1\cdot(3))/(3+1)](https://img.qammunity.org/2023/formulas/mathematics/college/buf82k8sjbro95aslc8j0rox2sybitr3ky.png)
Simplify the equation,
![(21-5)/(4),\text{ }(-15+3)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/fifun8fxvigguo2qty889vk038k58aq1ba.png)
![(16)/(4),\text{ }(-12)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/20hreoz7xrf5lk78ry93aonwl8zgeut0qn.png)
![L=(4,-3)](https://img.qammunity.org/2023/formulas/mathematics/college/6vngu31jzfy4tqmkq184wdk3dpslq6ms1n.png)
Therefore, the coordinates of point L are (4, -3)
The correct option is D.