In order to find if an integer is perfect, we need first to factor the number into prime factors.
For example, let's factor the number 16:
![16=2\cdot2\cdot2\cdot2=2^4](https://img.qammunity.org/2023/formulas/mathematics/college/bay5z2lmug3kt8gmsn4r2761akk66emq8v.png)
Since the exponent of all prime factors is even, that means the number has a square root that is an integer:
![√(16)=√(2^4)=2^{(4)/(2)}=2^2=4](https://img.qammunity.org/2023/formulas/mathematics/college/pw8tb0zcfpzt9im2guyevu0uwz91x6oi0j.png)
Let's use another example: number 36:
![\begin{gathered} 36=2\cdot2\cdot3\cdot3=2^2\cdot3^2 \\ √(36)=√(2^2\cdot3^2)=2\cdot3=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/21sunedkbmt8vt45rcrf5j3e6a03rmp82i.png)