151k views
0 votes
How to find the variance and round to one decimal place

How to find the variance and round to one decimal place-example-1
User Webtect
by
3.4k points

1 Answer

5 votes

The variance of a probability distribution is given as:


\sigma^2=E(x^2)-\lbrack E(x)\rbrack^2

Where,


E(x^2)=\sum ^{\text{ }}_ix^2_iP(x_i)\text{ and }E(x)=\sum ^{\text{ }}_ix^{}_iP(x_i)

From the table, the expressions are:


E(x^2)=7^2(0.1)+8^2(0.2)+9^2(0.3)+10^2(0.2)+11^2(0.2)=86.2

For E(x), it follows:


E(x)=7(0.1)+8(0.2)+9(0.3)+10(0.2)+11(0.2)=9.2

Substitute these values into the formula for variance:


\sigma^2=86.2-9.2^2=86.2-84.64=1.56\approx1.6

The variance is approximately 1.6

User Henk Van Boeijen
by
3.7k points