Answer:
![\begin{gathered} a)\text{ }(x,\text{ y\rparen }\rightarrow\text{ \lparen x + 5, y + 3\rparen} \\ b)\text{ \lparen x, y\rparen }\rightarrow\text{ \lparen-x, y\rparen} \\ c)\text{ shape and size of the two figures are equal but different positions or orientation} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/b32rbmyzmpbv82425pp7frqid1cvfbj3mw.png)
Step-by-step explanation:
Given:
Two different congruency mapping
To find:
a) a rule for the congruence mapping that will move a figure 5 units to the right and 3 units up
b) a rule for congruence mapping that reflects a figure across the y-axis
![\begin{gathered} a)\text{ Translation rule to the right:} \\ f(x\text{ -d\rparen: \lparen x, y\rparen }\rightarrow\text{ \lparen x+d, y\rparen} \\ Translation\text{ rule up:} \\ f(x)\text{ + b: \lparen x, y\rparen }\rightarrow\text{ \lparen x, y + b\rparen} \\ \\ 5\text{ units to the right and 3 units up:} \\ (x,\text{ y\rparen }\rightarrow\text{ \lparen x + 5, y + 3\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/gv4kzq2qujcrrjbwz0wy1dx0ppzt5grne3.png)
![\begin{gathered} b)\text{ reflection across the y-axis} \\ The\text{ x coordinate will be negated while the x coordinate will remain constant} \\ (x,\text{ y\rparen }\rightarrow\text{ \lparen-x, y\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/3lsmo1w2xi1h0hqjbjdbc53c785x1rbjm1.png)
![\begin{gathered} c)\text{ The mappings are called congruence mapping because the shapes and size remain the same } \\ \text{but the }position\text{ changes.} \\ As\text{ a result the corresponding angles and sides will be equal} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/h606xo54x7zmawj1rvxromi58oro2fr2bh.png)