Given the equation of the line:

To graph the line, we need two points lying on the line
We will graph the line with the help of the intercepts
when x = 0

so, the y-intercept = (0, 8)
When y = 0

So, the x-intercept = (-3, 0)
The line passes through the points (-3, 0) and (0, 8)
The graph of the line will be as shown in the following picture: