According to the problem, angles E and F are equal. Angles D and G are equal.
Also, if the trapezoid is isosceles, then FG = DE by definition. So, we express the following
![\begin{gathered} FG=DE \\ 11=a-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1x4orkbvu3dcgpxtzknlaamcn9kbcowzxd.png)
Let's solve for a
![\begin{gathered} 11+4=a \\ a=15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qej41enlvj5ew3q6f79iczqv9k1ajgtkzs.png)
We already know that the sum of all the interior angles is 360°.
![c+c+4c-20+4c-20=360](https://img.qammunity.org/2023/formulas/mathematics/college/r4tvt8cvpxwrwh32tx6lcvut3qnvniwi22.png)
Let's solve for c
![\begin{gathered} 10c-40=360 \\ 10c=360+40 \\ c=(400)/(10)=40 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ua2gjhq8dq0hfksuaomilnxhkbeoi6sjy2.png)
Then, we find each angle using the value of c
![\begin{gathered} D=c=40 \\ G=c=40 \\ E=4c-20=4\cdot40-20=160-20=140 \\ F=4c-20=4\cdot40-20=160-20=140 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/htor2r1plj8xtln6dy7sdptt6vtzb0n7zm.png)
Hence, angles D and G measure 40°, angles E and F measure 140°.