22.7k views
4 votes
An object is launched at 19.6 meters per second (m/s) from a 58.8-meter tallplatform. The equation for the object's height s at time t seconds after launch is s(t) =-4.9t^2 +19.6t+ 58.8, where s is in meters.a) When does the object strike the ground?b) What is the initial height of the object?c) What is the maximum height of the object?

User Amaca
by
3.9k points

1 Answer

4 votes

Solution

Step 1


s(t)\text{ = -4.9t}^2+19.6t+58.8

a)

The object strike the ground at s(t) = 0


\begin{gathered} s(t)=\text{-4.9t}^2\text{+19.6t+58.8} \\ \\ -4.9t^2\text{{}+19.6t+58.8 = 0} \end{gathered}
\begin{gathered} \mathrm{Multiply\:both\:sides\:by\:}10 \\ -4.9t^2\cdot \:10+19.6t\cdot \:10+58.8\cdot \:10=0\cdot \:10 \\ -49t^2+196t+588=0 \\ t_(1,\:2)=(-196\pm √(196^2-4\left(-49\right)\cdot \:588))/(2\left(-49\right)) \\ t_(1,\:2)=(-196\pm \:392)/(2\left(-49\right)) \\ Separate\:the\:solutions \\ t_1=(-196+392)/(2\left(-49\right)),\:t_2=(-196-392)/(2\left(-49\right)) \\ \mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:} \\ t=-2,\:t=6 \\ t\text{ cannot be negative} \\ t\text{ = 6 seconds} \end{gathered}

b)

The initial height = 58.8

c)


\begin{gathered} At\text{ maximum height, }(ds(t))/(dt)=0 \\ \\ s(t)\text{ =}-4.9t^2+19.6t+58.8 \\ \\ (ds(t))/(dt)=\text{ -9.8t + 19.6} \\ \\ -9.8t\text{ + 19.6 = 0} \\ \\ 9.8t\text{ = 19.6 } \\ \\ t\text{ =}(19.6)/(9.8)=2\text{ seconds} \\ \\ Maximum\text{ height =}-4.9*2^2+19.6*2+58.8 \\ \\ =-2^2* \:4.9+39.2+58.8 \\ =78.4 \\ Maximum\text{ height = 78.4} \end{gathered}

User Rohith Nambiar
by
4.7k points