We have the function:
![y=-(2)/(3)x+7](https://img.qammunity.org/2023/formulas/mathematics/college/y3juqahh70xq2xuys0q956cy461oackag7.png)
When we have the value of x, and we want to find the value of y, we replace x in the equation and calculate.
For x=-6, we have:
![y=-(2)/(3)\cdot(-6)+7=(-2\cdot6)/(3)+7=-(12)/(3)+7=-4+7=3](https://img.qammunity.org/2023/formulas/mathematics/college/g52s5i8jw89529kcshx08z5pegb1etdnxx.png)
The value of y for x=-6 is y=3.
When we know y, and we want to know the value of x, we replace y and calculate.
For y=5, we have:
![\begin{gathered} 5=-(2)/(3)x+7 \\ 5-7=-(2)/(3)x \\ -2=-(2)/(3)x \\ x=-2\cdot(-(3)/(2))=(2\cdot3)/(2)=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4ze9sd0b2giu2bt3yhjlmjvyyopdqwyw2i.png)
For y=5, the value of x is x=3.
We repeat this for the last two cases:
x=15, the value of y is y=17
![y=-(2)/(3)(15)+7=10+7=17](https://img.qammunity.org/2023/formulas/mathematics/college/cenjy7xeg2y81ecwx0ru0we1ylj6htjjmn.png)
y=15, the value of x is x=-12
![\begin{gathered} 15=-(2)/(3)x+7 \\ 15-7=-(2)/(3)x \\ 8=-(2)/(3)x \\ 8\cdot3=-2x \\ 24=-2x \\ x=(24)/(-2)=-12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u50khe2bztf5z9la54sl7tngnc7k3qij3h.png)