164k views
0 votes
514508502497495507458477464515Find the mean and sample standard deviation of these data. Round to the nearest hundredth.meansample standard deviation

User Kotzilla
by
3.5k points

1 Answer

2 votes

The number of observations in the data is n = 10.

Determine the mean of the data.


\begin{gathered} \mu=(514+508+502+497+495+507+458+477+464+515)/(10) \\ =(4937)/(10) \\ =493.7 \end{gathered}

So mean of the data is 493.7.

Determine the sum of square difference between observation and mean.


\begin{gathered} \sum ^n_(i\mathop=1)(x_i-\mu)^2=(514-493.7)^2+(508-493.7)^2+(502-493.7)^2+(497-493.7)^2 \\ +(495-493.7)^2+(507-493.7)^2+(458-493.7)^2+(477-493.7)^2+(464-493.7)^2+(515-493.7)^2 \end{gathered}
=412.09+204.49+68.89+10.89+1.69+176.89+1274.49+278.89+882.09+453.69
=3764.1

The formula for the standard deviation is,


\sigma=\sqrt[]{(\sum ^n_(i=1)(x_i-\mu)^2)/(n-1)}

Substitute the value in the formula to determine the standard deviation of the data.


\begin{gathered} \sigma=\sqrt[]{(3764.1)/(10-1)} \\ =\sqrt[]{(3764.1)/(9)} \\ =20.4507 \\ \approx20.45 \end{gathered}

Answer:

Mean: 493.7

Standard deviation: 20.45

User WhoKnows
by
3.0k points