Answer:
![(x+3)^2+(y)^2=3^2](https://img.qammunity.org/2023/formulas/mathematics/college/z20unc74t2e3vgdzm8ll7i9ihk0pddumk9.png)
Explanation:
Given the endpoints of the diameter, then the center of the circle is in the middle of the diameter:
The middle point is given as:
![\text{ Mid point= (}(x_1+x_2)/(2),(y_1+y_2)/(2))](https://img.qammunity.org/2023/formulas/mathematics/college/8hxbst0g27ww77gj1355i5bbb5yh6k9wkq.png)
Therefore, the center of the circle is located at:
![\begin{gathered} \text{Center}=\text{ (}(-6+0)/(2),(0+0)/(2)) \\ \text{ Center=(-3, 0)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zitw1djkgns5qtgjjzy2fv8pfcnhi4ca95.png)
The circle is represented by the following equation:
![\begin{gathered} (x-h)^2+(y-k)^2=r^2 \\ (h,k)\text{ center} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9p7hzvmivme5bflacb2r3kdeimahuw2s6h.png)
By substituting (h,k) and (x,y) (one of the given points), we can solve for r, to find the radius:
![\begin{gathered} (0-(-3))^2+(0-0)^2=r^2 \\ 9=r^2 \\ r=\sqrt[]{9} \\ r=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mk6034lrr889hlcu6jsf2yeerejazid62i.png)
Then, this circle is represented by the following equation:
![(x+3)^2+(y)^2=3^2](https://img.qammunity.org/2023/formulas/mathematics/college/z20unc74t2e3vgdzm8ll7i9ihk0pddumk9.png)