112k views
3 votes
Hello,May I please request help for the following question that is in the uploaded picture?

Hello,May I please request help for the following question that is in the uploaded-example-1
User Allevo
by
4.9k points

1 Answer

2 votes

Given:


a_n\text{ represents the number of autism cases diagnosed in the United States, in thousands , n years after 2000.}

a)

We get the following values from the graph.


a_1=100,a_2=120,a_3=145,a_4=170,a_5=200,a_6=220,a_7=260,\text{ and }a_8=300.

b)

The given nth term of the sequence is


a_n=28n+63

Required:


We\text{ need to find }\sum_{i\mathop{=}1}^8a_i.

Step-by-step explanation:

a)

Expand the sum.


\sum_{i\mathop{=}1}^8a_i=a_1+a_2+a_3+a_4+a_5+a_6+a_7+a_8


Substitute\text{ }a_1=100,a_2=120,a_3=145,a_4=170,a_5=200,a_6=220,a_7=260,\text{ and }a_8=300\text{ in the equation.}


\sum_{i\mathop{=}1}^8a_i=100+120+145+170+200+220+260+300


\sum_{i\mathop{=}1}^8a_i=1515

b)


Substitute\text{ n =1 in the equation }a_n=28n+63\text{ to find }a_1.
a_1=28(1)+63=28+63=91


Substitute\text{ n =2 in the equation }a_n=28n+63\text{ to find }a_2.


a_2=28(2)+63=56+63=119


Substitute\text{ n =3 in the equation }a_n=28n+63\text{ to find }a_3.


a_3=28(3)+63=84+63=147


Substitute\text{ n =4 in the equation }a_n=28n+63\text{ to find }a_4.


a_4=28(4)+63=112+63=175


Substitute\text{ n =5 in the equation }a_n=28n+63\text{ to find }a_5.


a_5=28(5)+63=140+63=203


Substitute\text{ n =6 in the equation }a_n=28n+63\text{ to find }a_6.


a_6=28(6)+63=168+63=231


Substitute\text{ n =7 in the equation }a_n=28n+63\text{ to find }a_7.


a_7=28(7)+63=196+63=259


Substitute\text{ n =8 in the equation }a_n=28n+63\text{ to find }a_8.


a_8=28(8)+63=224+63=287

Consider the summation.


\sum_{i\mathop{=}1}^8a_i=a_1+a_2+a_3+a_4+a_5+a_6+a_7+a_8


Substitute\text{ }a_1=91,a_2=119,a_3=147,a_4=175,a_5=203,a_6=231,a_7=259,\text{ and }a_8=287\text{ in the equation.}


\sum_{i\mathop{=}1}^8a_i=91+119+147+175+203+231+259+287


\sum_{i\mathop{=}1}^8a_i=1512

The actual sum is 1515 which is greater than 1512

So this value is underestimated.

Final answer:

a)


\sum_{i\mathop{=}1}^8a_i=1515

b)

Underestimated.

User Ben Straub
by
4.9k points