Answer:
![5,15,45,135](https://img.qammunity.org/2023/formulas/mathematics/college/1cbrx8b7gbyn30ii66t5ienkzsin199qoe.png)
Step-by-step explanation:
Given the nth term of the required sequence expressed according to the equation:
![a_n=5(3)^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/ymm0emxzdfg23jqzujhmvzing4bhkkv07q.png)
You need to get the first four terms of the sequence as shown:
For the first term, when n = 1
![\begin{gathered} a_1=5(3)^(1-1) \\ a_1=5(3)^0 \\ a_1=5(1) \\ a_1=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bc5cm6voaw5cpeebtc3bcnuv6gu55elhjx.png)
For the second term, when n = 2
![\begin{gathered} a_2=5(3)^(2-1) \\ a_2=5(3)^1 \\ a_2=5(3)_{} \\ a_2=15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/81bdqna6hjwgayayvp9pr247fa4ziwnzqm.png)
For the third term, when n = 3
![\begin{gathered} a_3=5(3)^(3-1) \\ a_3=5(3)^2 \\ a_3=5(9) \\ a_3=45 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cg9oh1npcxphff7joz9p7ljpkvml1uyire.png)
For the fourth term, when n = 4
![\begin{gathered} a_4=5(3)^(4-1) \\ a_4=5(3)^3 \\ a_4=5(27) \\ a_4=135 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p8cnx86adjt38krsc3tn2xio8prdec8dho.png)
Therefore the first four terms of the sequence will be 5, 15, 45 and 135