Let x be the number of questions worth 5 points and y be the number of questions worth 2 points.
![\begin{gathered} x+y=29\quad eq.1 \\ 5x+2y=100\quad eq.2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rikh7th20kp3nfz3ohhenyg44w1xxvzj7n.png)
Let us solve this system of equations using the substitution method.
![\begin{gathered} x+y=29 \\ y=29-x\quad eq.1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/65xywoakl0q10fu4ttvzgs5wyc1t8s1skz.png)
Substitute eq. 1 into eq. 2
![\begin{gathered} 5x+2y=100\quad eq.2 \\ 5x+2(29-x)=100 \\ 5x+58-2x=100 \\ 5x-2x=100-58 \\ 3x=42 \\ x=(42)/(3) \\ x=14 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5nwyqhyh3r6izggv9xssc3kjnk4p6fv1m4.png)
So, there are 14 questions worth 5 points.
Now substitute the value of x into eq. 1 to get the value of y
![\begin{gathered} y=29-x\quad eq.1 \\ y=29-14 \\ y=15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9adml960c60rdi7mhcp90qs30qk1al39l7.png)
So, there are 15 questions worth 2 points.
Therefore, the correct answer is
14 questions worth 5 points and 15 questions worth 2 points.