Given,
The latent heat of vaporization of water, L=2.26×10⁶ J/kg
The specific heat capacity of the water, c=4190 J/kg/K
The density of the water, ρ=1000 kg/m³
The volume of the water, V=100 m³
The initial temperature of the water, T₁=18 °C
The final temperature of the water, T₂=100 °C
The mass of the given volume of water is,
![\begin{gathered} m=\rho V \\ =1000*100 \\ =100*10^3\text{ kg} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/tef9qqoxqhk8pcf7h1rj1j13kg92qgaabq.png)
The heat needed to raise the temperature of the water to 100 °C is given by,
![Q_1=mc(T_2-T_1)](https://img.qammunity.org/2023/formulas/physics/college/polfdtijo65j1gljlok8kunprqiow3ev81.png)
The heat needed to vaporize the water at 100 °C is given by,
![Q_2=mL](https://img.qammunity.org/2023/formulas/physics/college/hau8cfut5wpthxz84vfkkp436588al0lgk.png)
Thus the total heat energy needed is given by,
![\begin{gathered} Q=Q_1+Q_2 \\ =m\lbrack c(T_2-T_1)+L\rbrack \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/s0jo0lpwygoxsey7wogeqg1p5ggwr5xcw8.png)
On substituting the known values,
![\begin{gathered} Q=100*10^3\lbrack4190(100-18)+2.26*10^6\rbrack \\ =2.6*10^(11)\text{ J} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ddm88heiy39x9gbqwh611sphelfo8q7gm5.png)
Thus the heat energy needed to evaporate the given amount of water is 2.6×10¹¹ J