Step 1: Represent the information provided in a right-angled triangle
Let's get side JK. We will use the Pythagoras theorem to solve for this
![\begin{gathered} |jk|^2=6.4^2+4.8^2 \\ |jk|^2=40.96+23.04 \\ |jk|^2=64 \\ |jk|=\sqrt[]{64} \\ |jk|=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qogghnb0ixtnqhaqaqyf622bw7upyjrp0q.png)
mm
Hence,
Triangle JKL is similar to triangle JMK
Therefore, the ratios of their corresponding sides are equal.
Thus,
![\begin{gathered} (KL)/(4.8)=(JK)/(6.4) \\ \text{ Hence} \\ KL=(4.8JK)/(6.4) \\ KL=(4.8*8)/(6.4)=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pty7dumf7d4aq9shpqjouxuuj4zvq33tnx.png)
Hence, side KL = 6