146k views
0 votes
drag the tiles to the correct boxes to complete the pairs use this table to match the molecules with their estimated masses

drag the tiles to the correct boxes to complete the pairs use this table to match-example-1
User Onome
by
3.1k points

1 Answer

3 votes
Scientific notation

We want to add the indicated atoms mass for each tile

H₂: 2 atoms of hydrogen

Since each hydrogen atom's mass corresponds to


1.67\cdot10^(-24)

Then H₂:


\begin{gathered} H_2=2\cdot H \\ H_2=2\cdot1.67\cdot10^(-24) \end{gathered}

we multiply just the numbers without exponent:


\begin{gathered} H_2=2\cdot1.67\cdot10^(-24) \\ =3.34\cdot10^(-24) \end{gathered}

CO₂: 1 atom of carbon and 2 atoms of oxygen

Similarly, to the previous, we know that:


\begin{gathered} CO_2=C+2\cdot O \\ CO_2=1.99\cdot10^(-23)+2\cdot2.66\cdot10^(-23) \end{gathered}

First we multiply the numbers without exponent: 2 * 2.66:


\begin{gathered} 2\cdot2.66=5.32 \\ CO_2=1.99\cdot10^(-23)+5.32\cdot10^(-23) \end{gathered}

Now, we can add both terms:


\begin{gathered} CO_2=1.99\cdot10^(-23)+5.32\cdot10^(-23) \\ CO_2=(1.99^{}+5.32)\cdot10^(-23) \\ CO_2=7.31\cdot10^(-23) \end{gathered}

NO₂: 1 atom of nytrogen and 2 atoms of oxygen

We know that:


\begin{gathered} NO_2=N+2\cdot O \\ NO_2=2.32\cdot10^(-23)+2\cdot2.66\cdot10^(-23) \end{gathered}

We can see this is really similar to the previous one.

We follow the same procedure:

First we multiply the numbers without exponent: 2 * 2.66:


\begin{gathered} 2\cdot2.66=5.32 \\ NO_2=2.32\cdot10^(-23)+5.32\cdot10^(-23) \end{gathered}

Now, we can add both terms:


\begin{gathered} NO_2=2.32\cdot10^(-23)+5.32\cdot10^(-23) \\ NO_2=(2.32^{}+5.32)\cdot10^(-23) \\ NO_2=7.64\cdot10^(-23) \end{gathered}

NH₃: 1 atom of nytrogen and 2 atoms of hydrogen

We know that:


\begin{gathered} NH_3=N+3\cdot H \\ NH_3_{}=2.32\cdot10^(-23)+3\cdot1.67\cdot10^(-24) \end{gathered}

First we multiply the numbers without exponent: 3 * 1.67:


\begin{gathered} 3\cdot1.67=5.01 \\ NH_3=2.32\cdot10^(-23)+5.01\cdot10^(-24) \end{gathered}

For the first time we have two terms with different 10 power:

on one side 10⁻²³ and on the other 10⁻²⁴

We want both have the same because if they are different we cannot add them.

Then we want to transform

5.01 · 10⁻²⁴

Into

___ · 10⁻²³

We need to find that number

Since


10^(-1)\cdot10^(-23)=10^(-24)

Then


5.01\cdot10^(-1)\cdot10^(-23)=5.01\cdot10^(-24)

We know that


\begin{gathered} 10^(-1)=(1)/(10)=0.1 \\ \downarrow \\ 5.01\cdot10^(-1)=5.01\cdot0.1=0.501 \end{gathered}

Then


5.01\cdot10^(-24)=5.01\cdot10^(-1)\cdot10^(-23)=0.501\cdot10^(-23)

Then, getting back to our equation for NH₃, we have that:


\begin{gathered} NH_3=2.32\cdot10^(-23)+5.01\cdot10^(-24) \\ NH_3=2.32\cdot10^(-23)+0.501\cdot10^(-23) \end{gathered}

Now, we can add normally as we did on the previous molecules:


\begin{gathered} NH_3=2.32\cdot10^(-23)+0.501\cdot10^(-23) \\ NH_3=(2.32+0.501)\cdot10^(-23) \\ NH_3=2.821\cdot10^(-23) \end{gathered}

Answer:


\begin{gathered} H_2=3.34\cdot10^(-24) \\ CO_2=7.31\cdot10^(-23) \\ NO_2=7.64\cdot10^(-23) \\ NH_3=2.821\cdot10^(-23) \end{gathered}

User Alexander Trauzzi
by
4.0k points