73.0k views
4 votes
The function f(x)=7x+2 is one to oneFind parts A and B

The function f(x)=7x+2 is one to oneFind parts A and B-example-1

1 Answer

4 votes

a) To find the inverse function, first, we set the following equation:


y=7x+2.

Now, we solve the above equation for x:


\begin{gathered} y-2=7x, \\ (y-2)/(7)=x\text{.} \end{gathered}

Finally, we exchange x and y


y=(x-2)/(7),

and set y=f(x). Therefore,


f^(-1)(x)=(x-2)/(7).

b) To verify that the above function is the inverse, we compute:


f(f^(-1)(x))andf^(-1)(f(x)).

For f(f^-1(x)), we get:


f(f^(-1)(x))=f((x-2)/(7))=7(x-2)/(7)+2=x-2+2=x.

For f^-1(f(x)) we get:


f^(-1)(f(x))=f^(-1)(7x+2)=x.

Answer:

Part A:


f^(-1)(x)=(x-2)/(7).

Part B:


f(f^(-1)(x))=f((x-2)/(7))=x.
f^(-1)(f(x))=f^(-1)(7x+2)=x.

User Blabb
by
5.1k points