.
The intersection of the Lines A and B creates a pair of equivalent angles
This means
![\begin{gathered} \angle1=\angle4 \\ \angle3x+7=\angle6 \\ \angle2=\angle5 \\ \angle3=\angle4x+5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nt60bo3m74gfo72f2yctor6zaa2chcujwh.png)
We can solve for x using the fact that the angles ∠3x + 7 and ∠3 form a linear pair. This gives us an equation and in it, we can substitute for ∠3 from the equations given above and solve the resulting equation for x.
(2).
We can solve for x using the fact that angles ∠3x + 7 and ∠3 form a linear pair. i.e .
![(3x+7)+\angle3=180^o](https://img.qammunity.org/2023/formulas/mathematics/college/14c5ti0o09ixe20mzqp1igjyseqht0y8zu.png)
and since
![\angle3=\angle4x+5](https://img.qammunity.org/2023/formulas/mathematics/college/h5brn75h942x655ubvc9w9hjyy5t6tyliz.png)
the above becomes
![(3x+7)+(4x+5)=180^o](https://img.qammunity.org/2023/formulas/mathematics/college/tb15au8lb11jo7qqc2tj41lh9kb1cuklx4.png)
Expanding the above gives
![7x+12=180^o](https://img.qammunity.org/2023/formulas/mathematics/college/zazrie7oqq33fjckqplyyx7gwe3b3j04f1.png)
Subtracting 12 from both sides gives
![7x=168^o](https://img.qammunity.org/2023/formulas/mathematics/college/eh5qcwuh45bzfl0xv870uwxheyr3tb5wmy.png)
Finally, dividing both sides by 7 gives
![x=24.](https://img.qammunity.org/2023/formulas/mathematics/college/tv93di38ibwt2sqd8lot1m52syps22ry0a.png)
which is our answer!
(3).
Since we know that
![\angle3x+7=\angle6](https://img.qammunity.org/2023/formulas/mathematics/college/z6zdrflg73ra2us9xpc4h2ir9j6styujem.png)
We can find the value of angle 6 by substituting the value of 3 in the above equation. This gives
![\begin{gathered} 3(24)+7=\angle6 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uic8czz49sirkkjim36rqlykl1saudzgtc.png)
![\boxed{\angle6=79^o\text{.}}](https://img.qammunity.org/2023/formulas/mathematics/college/i7y38oc4u2z64r0l99j8myixkydnz693c0.png)
which is our answer!