ANSWER:
1st option: 6.3 min
Explanation:
Given:
Work (W) = 4.5x10^5 J
Mass (m) = 1000 kg
Height (h) = 0.8 m
Time (t) = 6 h
1 hour is equal 3600 sec, therefore:
![6\text{ h}\cdot\frac{3600\text{ sec}}{1\text{ h}}=21600\text{ sec}](https://img.qammunity.org/2023/formulas/physics/high-school/jrmptsxh5v05dxl1dnkgg3qguia4wbys2r.png)
Time (t) =21600 sec
We have the following formula (Power):
![P=(W)/(t)^{}](https://img.qammunity.org/2023/formulas/physics/high-school/nlisih7x8w7u4kheiqmssrgpiv47qnshyn.png)
We replace the values of this case:
![\begin{gathered} P=(4.5\cdot10^5)/(21600) \\ P\: =20.83\text{ W} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/lshqgsghiy0wy4bd6s4q6veh3gnrbqiyfl.png)
Now we calculate the work in the form of potential energy needed to lift the bricks:
![\begin{gathered} W=m\cdot g\cdot h \\ \text{ we replacing} \\ W=1000\cdot9.8\cdot0.8 \\ W=7840\text{ J} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/w6dzvlrut2kz8ly7a0gstkorqx7p7d48o7.png)
Now, we can calculate the time by calculating the ratio between the work and the power, like this:
![\begin{gathered} P=(W)/(t) \\ t=(W)/(P) \\ \text{ we replacing} \\ W=(7840)/(20.83) \\ W=376.4\text{ sec} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/y3r6poox8paducusf62y6dau11tiir8qvd.png)
This is the time in seconds, to convert it to minutes, we must take into account that 1 minute is equal to 60 seconds, therefore:
![376.4\text{ sec}\cdot\frac{1\text{ min}}{60\text{ sec}}=6.27\cong6.3\text{ min}](https://img.qammunity.org/2023/formulas/physics/high-school/vggcymscmhfouaphttx0tbim9qijsb97jz.png)
The time it would take is 6.3 minutes