Solution
- The equation for the potential given is:
![V(t)=320e^(-3.1t)](https://img.qammunity.org/2023/formulas/mathematics/college/16ydkmneh017yrsicdf3v7g1tlatbutt7y.png)
Question 1:
- To find when the potential is 150V, we simply substitute the value of V = 150 into the equation and then find the corresponding value of t.
- Thus, we have:
![\begin{gathered} V=150 \\ \\ 150=320e^(-3.1t) \\ \\ \text{ Divide both sides by 320} \\ \\ e^(-3.1t)=(150)/(320)=(15)/(32) \\ \\ \text{ Take the natural log of both sides} \\ \\ \ln e^(-3.1t)=\ln((15)/(32)) \\ \\ -3.1t=\ln((15)/(32)) \\ \\ \text{ Divide both sides by -3.1} \\ \\ t=-(1)/(3.1)\ln((15)/(32)) \\ \\ t=0.2444s\text{ \lparen To 4 decimal places\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qly4iisoeigs1f1v0ggpg4y5nwkxjdy6vv.png)
Question 2:
- The rate at which the changing occurs is gotten by differentiating the function with respects to time.
- That is,
![\begin{gathered} V(t)=320e^(-3.1t) \\ \\ V^(\prime)(t)=(d)/(dt)(320e^(-3.1t)) \\ \\ V^(\prime)(t)=320(-3.1e^(-3.1t)) \\ \\ V^(\prime)(t)=-992e^(-3.1t) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xau62lros1mlxur0u4ot7ugwa8jft31ou7.png)
- Now that we have the expression for the rate of change of potential with time, we can proceed to find how fast the changing of potential V is happening at t = 0.2444s.
- Thus, we have:
![\begin{gathered} V^(\prime)(t)=-992e^(-3.1t) \\ put\text{ }t=0.2444 \\ \\ V^(\prime)(t)=-992e^(-3.1*0.2444) \\ \\ \therefore V^(\prime)(t)=-465.02125...\approx-465.0\text{ v/s} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7b3ibggyy5pr00wcme05cj7yy43tjnn6ou.png)
Question 3:
- The voltage is changing at -50v/s when we substitute V'(t) = -50 into the equation for V'(t).
- We have that:
![\begin{gathered} V^(\prime)(t)=-992e^(-3.1t) \\ \\ V^(\prime)(t)=-50 \\ \\ -50=-992e^(-3.1t) \\ \\ \text{ Divide both sides by -992} \\ \\ e^(-3.1t)=(-50)/(-992)=(25)/(496) \\ \\ \text{ Take the natural log of both sides} \\ \ln e^(-3.1t)=\ln((25)/(496)) \\ \\ -3.1t=\ln((25)/(496)) \\ \\ \text{ Divide both sides by -3.1} \\ \\ \therefore t=-(1)/(3.1)\ln((25)/(496)) \\ \\ t=0.96377...\approx0.9638seconds\text{ \lparen To 4 decimal places\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/65o515gkxvufaufvgmcaag2v1atk49yk3h.png)
Final Answers
Question 1: 0.2444 seconds
Question 2: -465.0v/s
Question 3: 0.9638 seconds