the charges for a haircut is $34
hence, the charges for a coloring is $ 73
Step-by-step explanationStep 1
set the equations.
a) let x represents the charges for one haircut
let y represents the charges for one coloring
b) translate into math terms
i) she did 1 haircut and colored the hair of 3 clients, charging a total of $253,so
![x+3y=253\Rightarrow equation(1)](https://img.qammunity.org/2023/formulas/mathematics/college/wh3gki6pgwoplb448onwoyj87huw4gls2r.png)
ii)Today, she did 1 haircut and colored the hair of 5 clients, charging a total of $399. so
![x+5y=399\Rightarrow equation(2)](https://img.qammunity.org/2023/formulas/mathematics/college/zzlsvewok7b17pn3o2y80zxw6ly0k9mpll.png)
Step 2
Solve the equations:
![\begin{gathered} x+3y=253\Rightarrow equation(1) \\ x+5y=399\operatorname{\Rightarrow}equat\imaginaryI on(2) \end{gathered}]()
a) isolate the x value in equation (1) and replace the value into equation(2)
![\begin{gathered} x+3y=253\Rightarrow equation(1) \\ subtract\text{ 3y in both sides} \\ x+3y-3y=253-3y \\ x=253-3y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4adqj0ssoczoiabhwu96csdrg5gq04slg7.png)
replace in equation (2)
![\begin{gathered} x+5y=399\Rightarrow equation(2) \\ (253-3y)+5y=399 \\ add\text{ like terms} \\ 253+2y=399 \\ subtract\text{ 253 in both sides} \\ 253+2y-253=399-253 \\ 2y=146 \\ divide\text{ both sides by 2} \\ (2y)/(2)=(146)/(2) \\ y=73 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uvj4fx2smd8nghoqktwdy6slbpil6dci0d.png)
hence, the charges for a coloring is $ 73
b), now replace the y value into equation (1) and solve for x
![\begin{gathered} x+3y=253\Rightarrow equation(1) \\ x+3(73)=253 \\ x+219=253 \\ x=34 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8tbafpqucf8m5r2fbiti2uw5rb5yfmirrv.png)
therefore,
the charges for a haircut is $34
I hope this helps you
.