Given data:
* The force applied on the block is,
![F_a=12.5\text{ N}](https://img.qammunity.org/2023/formulas/physics/college/8n29bdwimklxh1ak91rd47gxw7mst28je2.png)
* The frictional force acting on the block is,
![F_r=4.2\text{ N}](https://img.qammunity.org/2023/formulas/physics/college/tbuqx5rz0y712xoob1murpw6wrzok3qfsg.png)
* The acceleration of the block is,
![a=1.2ms^(-2)](https://img.qammunity.org/2023/formulas/physics/college/in59n7ql4gttuyyro02dzla8v5lqwwxh8j.png)
Solution:
The net force acting on the block is,
![\begin{gathered} F_{\text{net}}=F_a-F_r \\ F_{\text{net}}=12.5-4.2 \\ F_{\text{net}}=8.3\text{ N} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/56fror3hvaafrt2ow2zc95t492uzvlwy58.png)
According to Newton's second law, the net force in terms of the mass and acceleration of the block is,
![\begin{gathered} F_{\text{net}}=ma \\ m=\frac{F_{\text{net}}}{a}_{} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/18s2hvausxgobeepeza0pv9ypdx3hijo6u.png)
Substituting the known values,
![\begin{gathered} m=(8.3)/(1.2) \\ m=6.92\text{ kg} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/zr9x5deoe20wyel27zycdwy92ezx8q9rbw.png)
As the block is initially at rest, thus, the initial speed of the block is u = 0 m/s.
By the kinematics equation, the final speed of the block after t = 5 seconds is,
![\begin{gathered} v-u=at \\ v-0=1.2*5 \\ v=6\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/pl0bh7kpkld2nrpdgy9pa1qcczgkhyv8vb.png)
Thus, the final speed of the block after t = 5 seconds is 6 meters per second.
The kinetic energy of the block after t = 5 seconds is,
![\begin{gathered} K=(1)/(2)mv^2 \\ K=(1)/(2)*6.92*6^2 \\ K=124.56\text{ J} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ghmbmt14ujd0xbnp0ppg9tkivbw82266g7.png)
Thus, the kinetic energy of the block after t = 5 seconds is 124.56 joule.