Consider that it is mentioned that the number is a repeating decimal. So the cost value can be written as,
![2.\bar{23}](https://img.qammunity.org/2023/formulas/mathematics/college/k1f4aodoz3f34t27u9354ocrqklt32i2fi.png)
Let this number be 'x',
![\begin{gathered} x=2.\bar{23} \\ x=2.232323\ldots \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hhfbezri0o3g2qcce28ik6sxlwvnds2mic.png)
Multiply both sides by 100, since there are 2 digits repeating after the decimal,
![\begin{gathered} 100x=223.\bar{23} \\ 100x=223.232323\ldots \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cwoodaitaccaal5atv1b6be4bik6mqxbze.png)
Subtracting the equations,
![\begin{gathered} 100x-x=223.\bar{23}-2.\bar{23} \\ 99x=223+0.\bar{23}-(2+0.\bar{23}) \\ 99x=223+0.\bar{23}-2-0.\bar{23} \\ 99x=221+0 \\ x=(221)/(99) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wf1zvfe55qcpl2pznf0fdpma99sdjlhqua.png)
Thus, the fraction corresponding to the repeating decimal is 221/99.
And the corresponding mixed fraction can be evaluated as follows,
![(221)/(99)=(198+23)/(99)=(2(99)+23)/(99)=2(23)/(99)](https://img.qammunity.org/2023/formulas/mathematics/college/uxwmsz1zlmi5s4gykrp5r644pdf55x0q48.png)
Thus, the mixed fraction corresponding to the repeating decimal will be,
![2(23)/(99)](https://img.qammunity.org/2023/formulas/mathematics/college/xnhkcqnjv1afltfhfvdthouw1fgz3mto9v.png)