218k views
5 votes
Perform the indicated operation:10{cos(12)+i sin(12)]*14[cos \left(88)+i sin (88)]Give your answer in polar form:

Perform the indicated operation:10{cos(12)+i sin(12)]*14[cos \left(88)+i sin (88)]Give-example-1
User Comedian
by
7.0k points

1 Answer

3 votes

Answer:


140\lbrack\cos 100^0+i\sin 100^0\rbrack

Step-by-step explanation:

Given the operations


$10\mleft[\cos \mleft(12^(\circ)\mright)+i\sin \mleft(12^(\circ)\mright)\mright]^*14\mleft[\cos \mleft(88^(\circ)\mright)+i\sin \mleft(88^(\circ)\mright)\mright]$$$

First, we distribute each of the number outside the brackets to obtain:


$=\lbrack10\cos (12^(\circ))+10i\sin (12^(\circ))\rbrack\lbrack14\cos (88^(\circ))+14i\sin (88^(\circ))\rbrack$

Next, we expand:


$=10\cos (12^(\circ))\lbrack14\cos (88^(\circ))+14i\sin (88^(\circ))\rbrack+10i\sin (12^(\circ))\lbrack14\cos (88^(\circ))+14i\sin (88^(\circ))\rbrack$

We open the brackets:


$=140\cos (12^(\circ))\cos (88^(\circ))+140i\sin (88^(\circ))\cos (12^(\circ))+140i\sin (12^(\circ))\cos (88^(\circ))+140i^2\sin (12^(\circ))\sin (88^(\circ))$

Finally, we collect like terms and simplify:


\begin{gathered} $=140\cos (12^(\circ))\cos (88^(\circ))+140i\sin (88^(\circ))\cos (12^(\circ))+140i\sin (12^(\circ))\cos (88^(\circ))-140^{}\sin (12^(\circ))\sin (88^(\circ))$ \\ =140\cos (12^(\circ))\cos (88^(\circ))-140^{}\sin (12^(\circ))\sin (88^(\circ))+140i\sin (88^(\circ))\cos (12^(\circ))+140i\sin (12^(\circ))\cos (88^(\circ)) \\ =140\cos (12^0+88^0)+140i(\sin (88^0+12^0) \\ =140\lbrack\cos 100^0+i\sin 100^0\rbrack \end{gathered}

Note the following:

We applied the trigonometric identities below:


\begin{gathered} \cos (A+B)=\cos A\cos B-\sin A\sin B \\ \sin (A+B)=\sin A\cos B+\cos A\sin B \\ i^2=-1 \end{gathered}

User Rynop
by
7.9k points