So,
Given that the zeros of our polynomial function are:
![3i,2,-4](https://img.qammunity.org/2023/formulas/mathematics/high-school/p07usff14d3epivft900sj6bb9v7n97y3i.png)
We know that there are 2 real zeros, and 2 complex zeros. (3i and -3i).
So, what we're going to do to find the equation of this polynomial, is to multiply all zeros together, such that we obtain an expression that we can simplify. Like this:
![(x-2)(x+4)(x-3i)(x+3i)](https://img.qammunity.org/2023/formulas/mathematics/high-school/nd1og92dsxytr2tf8e5y7g3sopes1vws4d.png)
Now, we're going to multiply and distribute:
![\begin{gathered} (x^2+2x-8)(x^2+3xi-3xi-9i^2) \\ \to(x^2+2x-8)(x^2-9i^2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/zku2eop2bvlh44nh87naoc0mua69jmj4cs.png)
Remember that:
![i=\sqrt[]{-1}\to i^2=-1](https://img.qammunity.org/2023/formulas/mathematics/high-school/98nnv1htgs7pi6l8xfkz0bh25l8yd4750n.png)
So, we can rewrite:
![(x^2+2x-8)(x^2+9)](https://img.qammunity.org/2023/formulas/mathematics/high-school/nl6w0humib1dmacklp92vw142a70cohcrr.png)
Multiplying these terms, we got that:
![\begin{gathered} (x^2+2x-8)(x^2+9) \\ \to x^4+9x^2+2x^3+18x-8x^2-72 \\ \to x^4+2x^3+x^2+18x-72 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/5mieu5d0mh5sbhxievtlbg2iuudokdkc9x.png)
Therefore,
![P(x)=x^4+2x^3+x^2+18x-72](https://img.qammunity.org/2023/formulas/mathematics/high-school/dt241h53pa819bqp8e814zgcbl7t6gjd3o.png)