Step-by-step explanation
In order to represent the series in Sigma notation, we can apply the following standard form of a sequence:
![a_n=a_1+d(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/z9jyjzs3gtye2ac99tljhz0dstsxu67bsc.png)
Where a_1=2, and d represent the common difference.
Computing the common difference:
5-2 = 3 8-5 = 3 11-8 = 3 14-11 = 3
Thus, the sequence is as follows:
![a_n=2+3(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/fz19mmy6k51117psxpjm54la6pcsakxdr1.png)
Applying the distributive property:
![a_n=2+3n-3](https://img.qammunity.org/2023/formulas/mathematics/college/zj6vl9jjm7zthsqlhecklrdnuumqijp8zq.png)
Subtracting like terms:
![a_n=-1+3n](https://img.qammunity.org/2023/formulas/mathematics/college/tukxpdt8a1lji05ee36935gjkwa8rjbo83.png)
Expressing in sigma notation:
![\sum_{i\mathop{=}1}^53n-1](https://img.qammunity.org/2023/formulas/mathematics/college/3x92aakxguzycnxtq3coz5pnrmc5s7kzfq.png)