SOLUTION:
Step 1:
A bag has 14 marbles, all identical except for their color.
There are 7 red marbles, 5 blue marbles, and 2 yellow marbles.
If you draw two marbles from the bag WITHOUT replacement,
find the following probabilities:
7 red marbles , 5 blue marbles and 2 yellow marbles
Total = 7 + 5 + 2 = 14
( Without Replacement)
a.) P(RR) =
![(7)/(14)\text{ x }(6)/(13)=(42)/(182)=(3)/(13)](https://img.qammunity.org/2023/formulas/mathematics/college/mmxqheiajqs9a4moe6q1j8mq7iscahd3f2.png)
![P(R\R)\text{ = }(3)/(13)](https://img.qammunity.org/2023/formulas/mathematics/college/vqy5wh8hpjw2zqzbgax9zv7rdioa25o41a.png)
b.) P(RB) =
![(7)/(14)X\text{ }(5)/(13)=(35)/(182)=(5)/(26)](https://img.qammunity.org/2023/formulas/mathematics/college/jsic5xh2pzw2ui00u0uxu67gmzl2hpry55.png)
![P\text{ ( RB) =}(5)/(26)](https://img.qammunity.org/2023/formulas/mathematics/college/qiz1u2w6btpolr3v2iahqe1e7roa5912d7.png)
c.) P(RY) =
![(7)/(14)X(2)/(13)=(14)/(182)=(1)/(13)](https://img.qammunity.org/2023/formulas/mathematics/college/qso5mizcz9khyysysgqxp7sgquqjzui6i9.png)
![P(RY)\text{ =}(1)/(13)](https://img.qammunity.org/2023/formulas/mathematics/college/wdwul2s6sy9mk6tvv2ip5dwrs401jzmck8.png)
d.) P(BR) =
![(5)/(14)X(7)/(13)=(35)/(182)=(5)/(26)](https://img.qammunity.org/2023/formulas/mathematics/college/tmijyvho5a9n3jy474ux43z4jc0rm9pgb6.png)
![P(BR)\text{ =}(5)/(26)](https://img.qammunity.org/2023/formulas/mathematics/college/2kzefz9kxoe7vvfaenx9pkyuq09wibchaz.png)
e.) P(BB) =
![(5)/(14)\text{ X }(4)/(13)=(20)/(182)=(10)/(91)](https://img.qammunity.org/2023/formulas/mathematics/college/4925qe63wojivzz0q0tg3ucxeg9ese7r0d.png)
![P(BB\text{ ) =}(10)/(91)](https://img.qammunity.org/2023/formulas/mathematics/college/51rawu2k7krkjpvmxxvs9z8ohhg53djehs.png)
f.) P(BY) =
![(5)/(14)X\text{ }(2)/(13)=(10)/(182)=(5)/(91)](https://img.qammunity.org/2023/formulas/mathematics/college/uhvjhzv0lk3kwr3wbj6lsk94qbua4h0iyf.png)
![P(BY)\text{ =}(5)/(91)](https://img.qammunity.org/2023/formulas/mathematics/college/hl13i4acsfkhdw6imdiurbdronlad6thpx.png)
g.) P(YR) =
![(2)/(14)\text{ X}(7)/(13)=(14)/(182)=(1)/(13)](https://img.qammunity.org/2023/formulas/mathematics/college/xkjqd7tc3b002pghwnt3n30j9j7ymqkeml.png)
![P(YR)\text{ =}(1)/(13)](https://img.qammunity.org/2023/formulas/mathematics/college/dq0fzw0nln2pl3ljzxmx3kxsiftuexfngd.png)
h.) P(YB) =
![(2)/(14)\text{ X}(5)/(13)=(10)/(182)=(5)/(91)](https://img.qammunity.org/2023/formulas/mathematics/college/6nu8hroyjs8bchwc798t4kod86rgxl2m8i.png)
![P(YR)\text{ = }(5)/(91)](https://img.qammunity.org/2023/formulas/mathematics/college/nvpu0b8umevt6g2wkyo9etvmawnqgc9ud1.png)
l) P(YY) =
![(2)/(14)\text{ x}(1)/(13)=(2)/(182)=(1)/(91)](https://img.qammunity.org/2023/formulas/mathematics/college/gxk96fei5998s6p4a2u5avy0aqy5xknbw1.png)
![P(YY)\text{ =}(1)/(91)](https://img.qammunity.org/2023/formulas/mathematics/college/8bnoduzvkbr8uw46os96ugjoo9wttxoxel.png)