Revision
- General equation of a parabola:
![y=a\cdot(x-h)^2+k](https://img.qammunity.org/2023/formulas/mathematics/college/zvvz81egtanym8120gya11fehg7rlaq5dx.png)
- Coordinates of the vertex of a parabola:
![(h,k)](https://img.qammunity.org/2023/formulas/mathematics/high-school/r1bijgiz1knkpv8mbwskalqzfunmt8qgad.png)
- Axis of symmetry of the parabola:
![x=h](https://img.qammunity.org/2023/formulas/mathematics/high-school/9t47t0ynra5998binpqotnwg6u5fx595kn.png)
Answer
We have the following parabola:
![y=-5x^2+10x-6](https://img.qammunity.org/2023/formulas/mathematics/college/7o8ol4vg7460gmwvb3f57dz17b8t2jx3jo.png)
We can read the coordinates of the vertex and axis of symmetry from the equation of a parabola if we express its equation in the general form above. To do that we will "complete squares" in the following way:
![\begin{gathered} y=-5(x^2-2x)-6 \\ y=-5(x^2-2x+1-1)-6 \\ y=-5(x^2-2x+1)+5-6 \\ y=-5(x-1)^2-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ndf8y8h1uxa6e59r0g06i9hby1fe9qj23y.png)
Comparing this equation with the general equation of the parabola, we see that:
![\begin{gathered} h=1 \\ k=-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cecdfi63z448g4v7xdm1aqayiqqlo8ubyh.png)
So the coordinates of the vertex are:
![(1,-1)](https://img.qammunity.org/2023/formulas/mathematics/college/2c4jw0m9fg3531e9qwrp3bn4dyku4p3ksq.png)
and the axis symmetry is:
![x=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/xsb7940fuqxllob7pwpm2jsl9ruu78r3uv.png)