Given data:
Velcoity of the car along the curve;
![v=20.0\text{ m/s}](https://img.qammunity.org/2023/formulas/physics/college/srba2pojrba4vi13jeogp6w444huui1412.png)
Centripetal acceleration of the car;
![a_c=3.80\text{ m/s}^2](https://img.qammunity.org/2023/formulas/physics/college/knfjw7b3ftxy34ced2o5v0iue2qgtiamjd.png)
The centripetal acceleration is given as,
![a_c=(v^2)/(r)](https://img.qammunity.org/2023/formulas/physics/college/vlgj82shgt84cdngu1g7ekvryvbt02jjhc.png)
Here, r is the radius of the curve.
Rearranging the above equation to get an expression for radius of curve,
![r=(v^2)/(a_c)](https://img.qammunity.org/2023/formulas/physics/college/yt5amho4nwh6i9u5ag55mh438r664fesd7.png)
Substituting all known values,
![\begin{gathered} r=((20)^2)/(3.80) \\ =105.26\text{ m} \\ \cong105\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/znv0b5k6xcu7aeosoeba1l1h5u801ou93b.png)
Therefore, the radius of the curve is 105 m.